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Tecs Recommendations

* Need to develop consistent measure of quality of “utility
quality measures” that allow comparison.

— We recommend FP ROC.

= Community should separate issues different “Qualities”
and needs to work on at least 4 different “utility” qualities:

— Capture, Enrollment, Match/Failure, Share

= Compared to finger matching, Data/features used by face
algorithms has significantly greater variations, so cannot
expect same “prediction” ability from image quality.

= Blind SNR estimates workable for image-quality. Can be
improve by weighting “feature regions” and learning
features for Eyes/Glasses/Pose.

= Can develop a general PRAT/FASST Toolkit for algorithm
“match quality” from biometric algorithm specific data.
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Noise

Atmosphere/Weather T
Y

How do sensor/world
variations impact
Face Recognition?

Compressf( l \Gamma

Dynamic Range

Need controlled/designed experiments!
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Sensor : FOV 0.5° and 0.25° imaging (equivalent to 1600mm and
3200mm focal lengths ).

Experiment Setup :
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Example Photoheads

March 2 12:32 PM, Sensor Cl, (Original Images S1)

2 PM, Sensor CO, (Original Images S1)
(C0,S1) Probe Set

(C1,S1) Probe Set

[T LE ]
March 2 12:32 PM, Sensor €0, (Original Images S2)
(C0,S2) Probe Set
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March 2 12:32 PM, Sensor Cl, (Original Images S2)
(C1,S2) Probe Set
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Example “photohead” data

100ft

200ft

9:30am - 8:pm (4 samples per hour)

DARPA HID Conference Ssngﬂl_fgggm
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Experiments

= Four datasets: JPEG, Outdoor, Blur, & Gamma
— JPEG: Varying image quality from 100 to O

— Outdoor: Images collected from outdoor anti-
reflective marine LCD display

DARPA HID — HBASE collection: Camera distance = 100 / 200ft yccs.ed
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Experiments

— Blur: Blurred images by Gaussian kernel 7x7

— Gamma: Images processed by Gamma transform

1 §43343:
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e Facial Image Quality®
s from blind SNR estimate

Statistical properties of edge image
change with quality. Suppose pdf of
edge intensity image, ||VI||is fjvr(-)
has mean p.

Choosing a window around eyes,

S
5= [P define Face SNR image quality as
=S
s
P

, > edgeabove 2u’s pixels /"o
= ~ d
@ > edge pixels 2 fiwu) (r)dr

Can also apply spatial weighting

to key on eyes/nose.
Adapted from [Zhang-Blum-00].

yccs.ed

Image Quality vs Recognition Rate
(Blind SNR -based Face 1Q)

1 ...........................
=
g 0.95
S
= 09
c
g! —— Gallery 1, 256
S 0.85 images p=1 L
o
e Y = Gallery 2, 1545
0.8 - e e —— Images, p=10 [
1 2 3 4 5 6

Face Image Quality Measure

Correlations are .922 and .930!

Also tried multiple measures of blur and contrast and multi-

metric fusion. None were better than Blind SNR estimate.
Tested with Facelt, PCA, EBGM. Generally report Facel T
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Tecs Why Predict Failure

» System approach — if data is not sufficient can
acquire more while subject still available.

» Feedback to improve collection/sensor system.

» Decision Fusion/Boosting — can be used to weight
results from multiple algorithms or multiple data
sources.

» Help algorithm researchers focus on what needs
“fixed”

= For “utility” qualities, task based evaluation is
needed providing a “prediction”, so can use it for
comparison of quality measures
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Tecs Approaches

= Input filtering — determining failure before
running the classifier:

— Using image quality to predict failure of face
recognition.

= PRAT: Post Recognition Analysis Techniques

—One example: Failure Analysis from
Similarity Surface Techniques (FASST)
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Recognition

Recognized Successful
(as GW)
Recognition
— Failed
Similarity
Recognition Prediction
System Engine
Rejection
Successful
Rejected Rejection
(not in DB) Iga"e 9
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b Threshold 1

Distribution of I
recognition failure |

f(x)

Evaluating Failure Prediction

Distribution of
recognition success

Failure Prediction

False Alarm Rate
|Case 3|

|Case 3| + |Case 1]

FPFAR =

Conventional . Ground | = Failure Prediction
: Prediction . .
Explanation Truth Miss Detection Rate
Case 1| True Accept | Success P
FPMDR = |Case 2|
Case 2 | False Accept| Success ) |Case 2| + |Case 4]
Case 3 | False Reject | Failure 0]
Case 4| True Reject Failure P
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oo i FP ROC Compared to <=
— Quality-grouped ROC

\

FPMDR

FPFAR FAR

Uses Full Data Sets Segr_nenting galle_ry on quality
Vary “quality” threshold  inflates the difi€reneets
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Experimental FPROC vs CMC

IQ/SNR-based Failure Prediction
& CMC for different IQ/SNR sub-groups

1- 1
0 | W
08 4 09

Img Qual SNR W
07

08

08 /
s N—dATe fum 07 ——SNR-LowQ
047 s SNR-MediumQ
03 06

——SNR-HighQ
02
05
01

0 04 =+
0 O'I 02 03 04 05 05 07 08 09 1 1 6 11 16 21 26 31 36 41 46

FPFAR Rank

FPMDR

Recognition Rate

Constant HQ Gallery (1024), Group probes by IQ/SNR
12,000 photo-head probes

- yccs.edi
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Tecs FPROC

v" Allows more direct comparison of different quality
measures, or a quality measure on different
sensors/groups

T Requires an “evaluation gallery”

T Depends on underlying recognition system’s
tuning and decision making processes

— May understate the “impact” of removing poor
quality prints from process.

uccs.edy
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Prediction is harder
:ﬁ ‘ _ Bored image qualty ROG forbuss mages
AR
o]
Jpeg & Gamma L\

Boxed image quality ROG for JPEG and gamma parameters

il yccs edy
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Weighting on “eyes” region helps

Weighted and boxes image quality ROC
T T T T

FPMDR

T T T
~©- boxed 1Q group 5 blur
—®- weighted 1Q group 5 blur
—7— boxed IQ group 6 blur

v~ weighted 1Q group 6 blur

>
PSecurics\

0 02 0.3 0.4 FF?;R 0.6 07 0.8 0.9 1
uccs.ed
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But Probe/Gallery pose«sa
UCCS : :
differences dominate
Weighted and boxed image quality ROC
R @ weighted IQ group 6
oot E
08l \
\\ Different Poses
&
04t \\
03t %
o ﬁ:@;g%
° o1 02 03 oa i F?I;E;\R 06 07 08 09 1
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7(:'6‘ Learning added measures for Facial 1Q

ROC R ;=0 35Deyes andi =054 =054 =04 =0 Boxed image quality ROC for JPEG and gamma parameters

o6 07 08 08 1

N L
04 . . N
i i N L
L \ Y
” X)\\ \ (] D"\ 0‘2 U‘S 0.4

05
FPFAR

ab w < Compare to red lin
° ' ‘ ‘ ‘ ' : A’ﬁo\ﬂﬁ

0 01 0z 03 0.4 05 0.6 07 08
FPMDR

Add new few Features in Facial IQ based on
Ada-boosted wavelets around eyes to “learn”

features for_eyes closes/glasses. yccs.edu
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Image Quality-predictions

ROC of Failure prediction techniques
on 12,000 images

Img Qual Majority Fusion
; Img Qual Contrast

— 4 Img Qual SNR

—#&- Img Qual Blur

FPMDR

FPFAR

yuccs edi
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FIQ Conclusion

= Statistics of edge intensity distribution (blind
image SNR estimate) are well correlated with
recognition rates.

» For “good pose/lighing” images the IQ variations
are fair predictor of recognition failure.

» Windowing and Weighting help as 1Q becomes
weak but pose and lighting are more significant.

» |Q not as good predictor when significant
pose/lighting/contrast/compression variations are

allowed.
» |f doing “quality” should include pose/lighting
estimates against “standard” i =N
Cl:.lo?s:i(gasdpori:;s @

Image quality and rank

| Gallery

ycces.edi
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PRAT: Post-Recognition Analysis
Techniques

» Using data from actual recognition process, can Post
Analysis predict failure?

= Many Recognition/Classification processes can be
viewed using “similarity” scores.

= Failure Analysis from Similarity Surface Techniques.
For details see

— Li-Gao-Boult-05 IEEE Conf. Computational Intelligence for
Homeland Security and Personal Safety, 2005

— Riopka-Boult-05, AVBPA 2005.

uccs.ed
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B2  Similarity-based recognition <™

UCCS Failure Analysis from Similarity Surface Theory

= Similarity scores say
how well target matches
each DB entry.

= Used for all biometric
Recognition problems

= Usually largest score is
“‘match”. But is it good
enough?

sil
= dil=0
= Overall shape say a lot ]
about if it's a real
match.
sid
I e il -md:4
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Similarity Score Examples
Sorted Scores - e
254 i
70 . > Rank 6
s osiNy e
= 65 3 : x Rank 1
= ‘ ——
% 62.5
L 60
3 575 £
S s5%&°
w
>, 52.5%
E 50
©
£ 475
[T2 1
42.5
40

Sorted similarity scores
{s(x;, Y1), S(X;, ¥2), ..., S(X;, Yn)}

yuccs.ed
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vCc Simple “Slope
Dy = Height difference in similarity score S;-S,
Crude Slope estimate =Ds/p
» Sample size = 8,423 from Facelt
= Face images from FERET =t
U. Colorado at &
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600 - S B -
[] pi=zdiwhenR <10 |
[l De =X de when R <10
Il Di=:tdiwhenR_ >10
500 - M (] De = X de when Rm >10
400
*
@
N L
2 300 |
[t
(%]
200
100 — —‘ B
m

0 5 10 15 20 25 30 35 40 45

Separation of new Measures

Distance
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&  Forms of FASST tested

» Hand-chosen threshold for “slope”
features (common “normalization™?)

= Ada-Boost applied to designed
features of sorted similarity data of
top 10% (APRAT on slides)

= 3 layer Neural Net applied to top
10% similarity + number of “gallery
duplication” count

U. Colorado at >
IColorado Springs

& ROC Plots— JPEG data

PRAT Experiment on Similarity Scores using JPEG Qality Data n Sample Slze =

7 : —a— Classifiedby R =1andR_>1 :
g —o— Classifiedby R <5andR >5 | 121,308 x 4
o : : o= :
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Failure Prediction False Alarm Rate (FPFAR)
LIC 1LJ
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Failure Prediction Missed Detection Rate (FPMDR)

0.2

0.06

0.04

0
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ROC Plots — Blur data

PRAT Experiment on Blurred Images

Blur Kernel =7 x 10 |:

-
0.18 | —— Blur Kernel =7 x 20 |}
: ¢ | == Blur Kernel =7 x 30 |:

OABRX N, i —v— Blur Kernel = 7 x 40 |:
0.14F ' —— Blur Kernel =7 x 50 |;
—&— Blur Kernel =7 x 60 |:

0.12

0,08 NG RN NG T e B S PO S

o]

01 02 03 04 05 06 07 0.8 09 1
Failure Prediction False Alarm Rate (FPFAR)

= Sample size =
4,064

= Only probe
blurred

We find

» Blur kernel
STD 1 =
performance }

U. Colorado at
IColorado Springs
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0.1

0.09

0.04

0.01

Failure Prediction Missed Detection Rate (FPMDR)

0.06\

e TR SO SUU. OO WU I

0.05[§

PSecurics\
ROC Plots — Gamma data

PRAT Experiment with Different Gamma Values

—s— Gamma=0.4 |
| —o— Gamma = 0.8 |:
—— Gamma=1.2 |:
—v— Gamma=1.6 |:
—— Gamma=2.0 |

0.03F

0.02f

01 02 03 04 05 06 07 08 09 1

Failure Prediction False Alarm Rate (FPFAR)

=N

= Sample size =
4,052

We find

» Gamma
transform has
little impact
on prediction
performance
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s APRATvs PRAT (Gamma) |

PRAT Experlment W|th lefarant Gamma Valuas

Wiee 22222 3‘; APRAT is good
—— Gamma=12 ||

~camma-1s . and automated!

—t— Gamma 2.0 ;

Oy

PRAT Results with Differenty Values

Failure Prediction Missed Detection Rate (FPMDR)

FPMDR
2

0 1 1 1 1 1 1 oot
0 01 02 03 04 05 06 :
Failure Prediction False Alarm R:
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- ' APRAT vs |Q-based prediction

APRAT

(note Vertlcal Scalel ) S Boxed |rr‘|agequa\||‘y ROClor‘JPEG an‘d gamma ‘parameler‘s
N\ 4 g50
v:\‘ \ @ q20
=R\ s
osl | N\ * e
\ \
1 \\\

L L L L L L
o CEl .= 5] S o5 Se o7 o's 0 0.1 04 05 06

Failire Prediction False Alanm Rate (FPEAR) FPFAR

IQ based

yuccs.ed
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APRAT on JPEG/Blur

PRAT Experiment on Similarity Scores using JPEG Qality Data

0251

—a— Classified by F{h and F{n >1
—o— Classified by F{h <5 and F{n >5
| —— Classified by F{h <10 and F{n >10

0.2

0.15

01 PRAT Experiment on Blurred Images

Blur Kernel =7 x 10
Blur Kerhel = 7 x 20
Blur Kethel = 7 x 30
Blur Kernel = 7 x 40
Blur Kernel = 7 x50 |;

Blur Kernel = 7 x 60 |:

0.05p 7

Failure Prediction Missed Detection Rate (FPMDR)

0 01 0.2 0.3 0.4 05 0.6 0
Failure Prediction False Alarm Rate (FPFAR)

Failure Prediction Missed Detection Rate (FPMDR)

o] 01 02 03 04 05 06 07 08 09 1
Failure Prediction False Alarm Rate (FPFAR)
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Gy FASST vs IQ Comparison: Blur

Blur Kernel =7 x 10
Blur Kernel = 7 x 20
Blur Kernel = 7 x 30
Blur Kernel = 7 x 40
Blur Kernel = 7 x 50

Blur Kernel = 7 x 60 |}

bHitbd)

Failure Prediction Missed Detection Rate (FPMDR)

01 02 03 04 05 06 07 08
Failure Prediction False Alarm Rate (FPFAR)

04

(Note vertical scale!) ..
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& ROC Plots —Photohead dat

= Sample size =
0,35 v g e B 21,353

L= Jennesetz) f w Cross-validation

o

a

§ 0.3t

£ 025 » Real data (»)

§ 0.2

3 P | We find

V(] SN ARSI JHMIHRS: ST BRI A SRR A . e . .
z \ | » Predicting failure in
2 o} e B e - - - weather more
I S N .. G N SR SR S difficult

» EER (l.e. MD=FA)

0 H H H H : H
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 : ~ 0
Failure Prediction False Alarm Rate (FPFAR) IS 1 2 A)
uccs.edy
U. Colorado at N
IColorado Springs m

FASST and Image Quality

ROC of Failure prediction techniques
on 12,000 images

| ~4—FASST
— | -®-FASST with Img Qual
: Img Qual Majority Fusion
o Img Qual Contrast
_ —— - Img Qual SNR

| # Img Qual Blur

FPMDR

FPFAR
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The Eyes Have it

ecognition Rates unacceptable especially
outdoor and at long distances.

»Riopka & Boult in ACM Biometric Workshop
showed strong impact of Eye-location.

Performance Averaged over All llluminations

Facelt Eye Localization vs. Computed Eye Coordi Facelt Eye Localization vs. Specified Eye Coordina
No Pi NE‘:R CAl\‘ﬂ’ERdA 0-10MPH Facelt - Pose c05 —+— Eyes Specified - Pose (
- 0 Frecipitation w ¥¥in 3 —=— Facelt - Frontal Eyes Specified - Fronta|
1 1.0 = Facelt - Pose c29 —e— Eyes Specified - Pose (——
R Talinl mat e R
% { 2o 7 i sszSciE
= g i A
Y os T T T o i o]t T1t
13 t 1 ] 5o P S
[ @ T =
= 3 TL
] B L
E = 71
w07 T
y # Facelt Eye Localization H L
= 06 1F 3 r
5 o mCe Eye Location H
= 3 0.
E U E
3 L
0.
04 0 5 10 15 20 25
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Rank (r)
Time of Day (hour) LUCCS ed
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Tecs RandomEyes™

Predict when failure likely, and if so
perturb location of features and
choose best alternative.

Use a Neural Net to predict probable failture from top
similarity scores.

Features for prediction:

»Eight Wavelet coefficients from a 4 point discrete Daubechies
wavelet transform applied to top 8 sorted similarity scores.

»Each probe had 4 gallery images so we added two other
features, number of matching IDs in top 8 and next highest rank
of top ranked ID (=9 if none).

» See paper by Riopkia-Boult in AVBPA 2005

yuccs.ed
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Synthetic Data Results

B Failure not predicted
B Degraded
B Unchanged
= Improved
FACEIT EBGM
100%
80% | b pe] e S N U Y SUUUE B S N S—
% T+ t—— 1 1 < 1 - 1

Fraction of perturbed images

0%

100%
»
e
2 80%
&
O
o 60%
K&
K
5 40% T
o
s}
_5 20%
=
8
= 0%
w 2 4 6 8 2 4 6 8
Standard Deviation Standard Deviation
of Original-Image of Original-Image
Eye Perturbation Eye Perturbation
i ixels)
uccs.ed
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RandomEyes™ helps
Photoheads

» Predicting failure and trying perturbations
can significantly improve recognition

Photo-head Testing

1.00
o o Perturbation Enhanced Facelt
© < Original Facelt Algorithm
¥ 095
5
= a
c -
8) 0.90 [ é
o [=3
2 = T

- S

— 085 - t A
X~
c
©
o 0.80

8 10 12 14 16 18 20 22 24

Hour of the Day
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@& Conclusions/Future Work

= |Q strongly correlated to Recognition rate but a weak per
image predictor. Not a good predictor when
pose/lighting/eye dominates recognition rates.

= FASST, using cumulative intra-cluster distance in high
ranking similarity scores is an effective predictor. Two
forms on different representations/techniques show its
generality.

= FASST + Image quality not significantly better

= FASST + perturbations statistically significantly improve

Tecs Shameless plug

» Workshop on Privacy Research In Vision
= June 2005 (in conjunction with CVPR)

» Discussion oriented workshop but will have
papers as well.
— Papers due Mar 15

yccs edu

results
= Can we apply FASST on a “test gallery” and make it useful during raw
capture?
= Can FASST be useful in factor analysis and experimental
assessment?
uccs.edy
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